

www.mymathscloud.com

Please write clearly in	olock capitals.
Centre number	Candidate number
Surname	
Forename(s)	ANSWERS
Candidate signature	

A-level **MATHEMATICS**

Unit Pure Core 4

Friday 17 June 2016

Afternoon

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 (a) Express
$$\frac{19x-3}{(1+2x)(3-4x)}$$
 in the form $\frac{A}{1+2x} + \frac{B}{3-4x}$.

[3 marks]

- (b) (i) Find the binomial expansion of $\frac{19x-3}{(1+2x)(3-4x)}$ up to and including the term in x^2 . [7 marks]
 - (ii) State the range of values of x for which this expansion is valid.

[1 mark]

QUESTION PART REFERENCE	Answer space for question 1
1a)	19x - 3 = A(3-4x) + B(1+2x)
	$x = \frac{3}{4} - \frac{19(\frac{3}{4}) - 3}{3} = B(1 + 2(\frac{3}{4}))$
	$\frac{57/4-3=10/4B}{45/4=10/4B}$
	B=9/2 OR 4.5
	$x = -1/2 \rightarrow 19(-1/2) - 3 = A(3 - 4(-1/2))$
	$\frac{-19}{2} - 3 = 5A$ $\frac{-25}{2} = 5A$
	A = - 5/2 OR - 2-5
	19x - 3 = -2.5 + 4.5
	$(1+2\pi)(3-4\pi)$ $(1+2\pi)$ $(3-4\pi)$
	$=$ -5 + 9 $\frac{2(1+1x)}{2(3-4x)}$
	2(1+12) 2(3-4)2)

JESTION PART FERENCE	Answer space for question 1
bi)	$\frac{-5(1+7x)^{-1}+9(3-4x)^{-1}}{2}$
	$\frac{-5(1+7x)^{-1}}{2} = -5(1+(-1)(7x)+(-1)(-1)(1x)^{2}$
	$\frac{1}{2} = -\frac{5}{2} \left(1 - 2\chi + 4\chi^2 \right)$
	$\frac{9(3-4x)^{-1} = \frac{9}{2}(3)^{-1}(1-\frac{4}{3}x)^{-1}}{2}$
	$=\frac{3}{2}\left[1+(-1)(-\frac{4}{3}x)+(-1)(-2)(-\frac{4}{3})^{2}\right]$
	$= \frac{3}{2} \left(1 + \frac{4}{3} x + \frac{16}{9} x^{2} \right)$
	$\frac{-S(1-1x+4x^2)+\frac{3}{2}(1+\frac{4}{3}x+\frac{16}{9}x^2)}{2}$
	$\frac{-5 + 5x - 10x^{2} + 3 + 7x + 8x^{2}}{2}$
	-1 + 7x - 22 x2
ii)	valid for 12x1<1 OR 1-4/3x1<1
	12/(12) $12/(3/4)$
	: 1/2 < x < 1/2
	Turn over

2 By forming and solving a suitable quadratic equation, find the solutions of the equation

$$3\cos 2\theta - 5\cos \theta + 2 = 0$$

in the interval $0^{\circ} < \theta < 360^{\circ}$, giving your answers to the nearest $0.1^{\circ}.$

[5 marks]

QUESTION PART REFERENCE	Answer space for question 2
2)	$3\cos 2\theta - 5\cos \theta + 2 = 0$ $0 < \theta < 360^{\circ}$. $\cos 2\theta = 2\cos^{2}\theta - 1$
	$\left[\cos 2\theta = 2\cos^2\theta - 1\right]$
	3 (2cos20-1) - Scos 0 + 2 = 0
	$6(0)^{2}\theta - 3 - 5(0)\theta + 2 = 0$
	600120 - 50010 -1=0
	$(6\cos\theta + 1)(\cos\theta - 1) = 0$
	6(0)A+1=0 OR COIA-1=0
	$\cos \theta = -1/6 \qquad \cos \theta = 1$
	θ = 99.59406, ' Θ = 0' -1 out of 260.4059
	260.4059 ruge
	5 A
	180-80.4
	80.4
	7
	270
	D=99-6°, 260.4° (newest 0-1°)

www.my.mathscloud.com

QUESTION PART REFERENCE	Answer space for question 2
REFERENCE	
	a .
-	
	A ₃

Turn over ▶

3 (a) Express
$$\frac{3+13x-6x^2}{2x-3}$$
 in the form $Ax + B + \frac{C}{2x-3}$.

[4 marks]

(b) Show that
$$\int_3^6 \frac{3+13x-6x^2}{2x-3} dx = p+q \ln 3$$
, where p and q are rational numbers.

[4 marks]

0.15051011	
QUESTION PART REFERENCE	Answer space for question 3
3a)	$3 + 13x - 6x^2 \rightarrow (-3x + 2)$
	$2x-3$ $2x-3 - 6x^2 + 13x + 3$
	$-6x^2+9x$
	0 + 4x + 5
	0 + 4x + 3 $-4x - 6$
	0(+9)
	$3 + 13x - 6x^2 = -3x + 2 + 9$
	2x-3 $2x-3$
	A = -3, $B = 2$, $C = 9$
6)	$\int_{0}^{6} -3x + 2 + 9 dx$
	2 2
-	$\frac{1-3\lambda}{2}$ $\frac{7}{2}$ $\frac{1}{2}$
	$\left(-3(6)^{2}+2(6)+\frac{9}{2}\ln(2(6)-3)\right)-\left(-3(3)^{2}+2(3)+\frac{9}{2}\ln(2(3)-3)\right)$
	$\begin{pmatrix} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 $
	(-1/2 + 9/09) - (-15 + 9/03)
	$\left(-42 + \frac{9}{2} \ln 9\right) - \left(-15 + \frac{9}{2} \ln 3\right)$
	$\frac{-69 + 9 /n 3^2 - 9 /n 3}{2}$
	2 2
	$-\frac{69}{2} + \frac{18}{2} \ln 3 - \frac{9}{2} \ln 3 = -\frac{69}{2} + \frac{9}{2} \ln 3$

www.ms.marhs.cloud.com

Answer space for question 3	OUESTION	Amount
	PART	Answer space for question 3
	REFERENCE	
		,
		×,

Turn over ▶

4 The mass of radioactive atoms in a substance can be modelled by the equation

$$m = m_0 k^t$$

where m_0 grams is the initial mass, m grams is the mass after t days and k is a constant. The value of k differs from one substance to another.

(a) (i) A sample of radioactive iodine reduced in mass from 24 grams to 12 grams in 8 days. Show that the value of the constant k for this substance is 0.917004, correct to six decimal places.

[1 mark]

- (ii) A similar sample of radioactive iodine reduced in mass to 1 gram after 60 days.Calculate the initial mass of this sample, giving your answer to the nearest gram.[2 marks]
- (b) The half-life of a radioactive substance is the time it takes for a mass of m_0 to reduce to a mass of $\frac{1}{2}m_0$.

A sample of radioactive vanadium reduced in mass from exactly $10~{\rm grams}$ to $8.106~{\rm grams}$ in $100~{\rm days}$.

Find the half-life of radioactive vanadium, giving your answer to the nearest day.

[4 marks]

QUESTION PART REFERENCE	Answer space for question 4
NEI ENEROL	
4ai)	$M = M_0 k^t$
	Mo = 24, M=12, 1=8
	12 = 24 X K 8
	1 = k8
	$\frac{1}{k} = k^{8}$ $k = \sqrt[6]{1/2} = 0.9170040. = -0.917004(6dp)$
· i)	M = Mo x 0.917004 t M=1, t=60
	1 = Mo X 0.917004 60
	Me = 1 = 181.0198477
	0.91700460 = 18/g (newest g)

nun nymathschold com

QUEST	
PAR REFERE	Allswer space for question 4
, ~	
_6	110 10, M 8:106 F=100
	8.106 = 10 x k 100
	$k = \frac{100}{8.106} = 0.9979023$
	10
	M=5, Mo=10, K=0.9979023.
	71 3/10 TO X - 0 - 11 1 10 2 3
	S = 10 x 0.99 79023. E
	0.5 = 0.9979023.
	log 0.5 = t log 0.9979023.
	t = 10g0.5
	log 0.9979023.
	t = 330.08 529 28.
	t= 330 days (neasest day)
	= 3 day)
31	
18111 BB 110 11	

- It is given that $\sin A = \frac{\sqrt{5}}{3}$ and $\sin B = \frac{1}{\sqrt{5}}$, where the angles A and B are both acute.
 - (a) (i) Show that the exact value of $\cos B = \frac{2}{\sqrt{5}}$.

[1 mark]

(ii) Hence show that the exact value of $\sin 2B$ is $\frac{4}{5}$.

[2 marks]

(b) (i) Show that the exact value of $\sin(A-B)$ can be written as $p(5-\sqrt{5})$, where p is a rational number.

[4 marks]

(ii) Find the exact value of $\cos(A-B)$ in the form $r+s\sqrt{5}$, where r and s are rational numbers.

[3 marks]

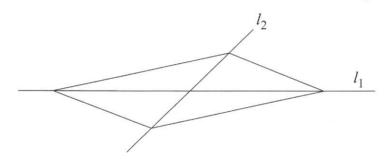
QUESTION PART REFERENCE	Answer space for question 5	
5)	$\int S = \chi = \int (SS)^2 - I^2$	OR sin^28 * + (0)^8 = 1
ai)	$\frac{h}{\chi(z)} = \frac{\chi \cdot 2}{\chi(z)}$	$\left(\frac{1}{\sqrt{5}}\right)^2 + \left(os^2 B^2 = 1\right)$
	$GSB = \frac{2}{5} (as reg)$	$\frac{1}{5} + \cos^2 B^2 = 1$ $\cos^2 B = 4/5$
_ii)	SIN 28 = 2 SIN B COS B	$GJR = \boxed{4 = 2}$
	$\frac{2}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{5}}\right)$	
	= 4 (as reg)	
	£	

QUESTION	Answer space for question 5
PART REFERENCE	anewer space for question 5
bi)	$\cos A = 1 - (\frac{55}{3})^2 = 1 - \frac{5}{4} = \frac{4}{9} = \frac{2}{13}$
	(3)
	$\sin A = \sqrt{5}$
-	$\sin A = \sqrt{3}$ $\sin B = \frac{1}{\sqrt{3}}$ $\cos A = \frac{2}{3}$ $\cos B = \frac{2}{\sqrt{5}}$
	V
	sin (A-B) = sin A COIB - COIASIN B
	$= \left(\frac{\sqrt{5}}{3}\right)\left(\frac{2}{\sqrt{5}}\right) - \left(\frac{2}{3}\right)\left(\frac{1}{\sqrt{5}}\right)$
	= 25s - 2 = 25s - 2 x 35s
	355 355 355
	= 6(5)-655
	9(5)
-	= 30 - 655 = 6(5 - 55)
	45 45
	· = 2 (5 (5)
	$=\frac{2}{15}\left(5-55\right)$
	p=7/15 /5
)	(a, b, b, c,
-11)	COS(A-B) = COSACOSB + SINASINB
	$= \left(\frac{2}{3}\right)\left(\frac{2}{5}\right) + \left(\frac{5}{3}\right)\left(\frac{1}{5}\right)$
	- 4 5
	= 4 + JS = 4+JS x 3JS 3JS 3JS 3JS 3JS
	= 12,5 + 3(5) = 12,5 + 15
	$= 12\sqrt{5} + 3(5) = 12\sqrt{5} + 15$ $9(5)$ 45
	$\frac{=455+1}{15} OR \frac{1}{3} + 455$
	r=1/3, s=4/15

The line l_1 passes through the point A(0, 6, 9) and the point B(4, -6, -11).

The line l_2 has equation $\mathbf{r} = \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -5 \\ 1 \end{bmatrix}$.

(a) The acute angle between the lines l_1 and l_2 is θ .


Find the value of $\cos\theta$ as a fraction in its lowest terms.

[5 marks]

(b) Show that the lines l_1 and l_2 intersect and find the coordinates of the point of intersection.

[5 marks]

(c) The points C and D lie on line l_2 such that ACBD is a parallelogram.

The length of AB is three times the length of CD.

Find the coordinates of the points C and Q.

[5 marks]

QUESTION PART REFERENCE	Answer space for question 6
6a)	$a = \begin{pmatrix} 4 - 0 \\ -6 - 6 \\ -11 - 9 \end{pmatrix} = \begin{pmatrix} 4 \\ -12 \\ -20 \end{pmatrix}$ $b = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}$
	a.b = 4 x 3 + -12 x -5 + -20 x l
	= 12 + 60 - 20 = (52)
	$ a = \sqrt{(4)^2 + (-12)^2 + (-20)^2} = 4\sqrt{35}$
	$ b = \sqrt{(3)^2 + (-5)^2 + (1)^2} = \sqrt{35}$
	1a1/61 = 4 535 x 535 = (140)
	$\cos \theta = a.b = 52 = 13$
	1a1161 140 35

OUESTION Answer space for question 6
PART REFERENCE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left(\begin{array}{c c} q \end{array}\right) \left(\begin{array}{c} -20 \end{array}\right) \left(\begin{array}{c} -2 \end{array}\right) \left(\begin{array}{c} -1 \end{array}\right)$
0 + 4 m = -1 + 3 x 0
6-12M = 5-5L 2
$9 20\mu = -2 + 2$ 3
using () and (2) - 4 ps - 3 L = -1 (1)(x3)
-12m +5L = -1 @
+ 12m - 9 x = -3
- 4 L = - 4
Z = 1
$4\mu - 3(1) = -1$
4 _M = 2
m' = 1/2
check in 3 -> 9-20(1/2) =-2+1
9-10 = -2+1
: intersect
when L=1 -1 (-1) + 1/3
when $\lambda = 1 \rightarrow \begin{pmatrix} -1 \\ 5 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}$
= (2) = (2 0 -1)
$= \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
(-1)
check, when $\mu^{=1/2} \rightarrow \begin{pmatrix} 0 \\ 6 \\ 9 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 4 \\ -12 \\ -20 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$
19/ (-20/ (-1)
Turn over N

QUESTION PART REFERENCE	Answer space for question 6
c)	length AB (1,) = $\int 4^2 + 12^2 + 20^2 = 4\sqrt{35}$ or $\sqrt{560}$ length CD (12) = $\int \sqrt{560}$ OR $\int \sqrt{35}$
	Tergth CD (12) = 1 J560 OR 4 J35
	midpoint of CD is (2,0,-1) (M)
	1 length CM = 2 535
	$\frac{10 \text{GeV}}{3}$
	$C = \begin{pmatrix} -1 + 3\lambda \\ S + -5\lambda \end{pmatrix} \qquad M = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$
	$\begin{pmatrix} S + - S \lambda \\ -2 + \lambda \end{pmatrix}$
	$CM = \sqrt{(-1+3\lambda-2)^2 + (s-s\lambda)^2 + (-2+\lambda+1)^2}$
	$\frac{2}{3}\sqrt{35} = \sqrt{(-3+3/)^2 + (5-5/)^2 + (-1+/)^2}$
	$\frac{2}{3}\sqrt{35} = \sqrt{9 - 18\lambda + 9\lambda^2 + 25 + 50\lambda + 15\lambda^2 + 1 - 2\lambda + \lambda^2}$
	$\frac{2}{3}\sqrt{35} = \sqrt{35}\lambda^2 - 70\lambda + 35$ (2)
	352² - 702 + 35 = 140 9
	9
	31522 - 6302+315=140
	31522-6302+175=0 (=35)
	$9 \lambda^2 - 18 \lambda + 5 = 0$
	$(3\lambda - 1)(3\lambda - 5) = 0$
	$L = \frac{1}{3}$, $L = \frac{5}{3}$ When $L = \frac{1}{3}$: — When $L = \frac{5}{3}$: —
	When $L = \frac{1}{3} : -$ $C = (0, \frac{10}{3}, \frac{5}{3})$ $D = (4, \frac{-10}{3}, \frac{-1}{3})$

www.mymathscloud.com

QUESTION PART REFERENCE	Answer space for question 6
	·
	,
	`,

Turn over ▶

7 A curve C is defined by the parametric equations

$$x = \frac{4 - e^{2 - 6t}}{4}, \quad y = \frac{e^{3t}}{3t}, \quad t \neq 0$$

(a) Find the exact value of $\frac{dy}{dx}$ at the point on C where $t = \frac{2}{3}$.

[5 marks]

- (b) Show that $x = \frac{4 e^{2 6t}}{4}$ can be rearranged into the form $e^{3t} = \frac{e}{2\sqrt{(1 x)}}$.
- (c) Hence find the Cartesian equation of C, giving your answer in the form

$$y = \frac{e}{f(x)[1 - \ln(f(x))]}$$

[2 marks]

[∠ mar
Answer space for question 7
$7a) x = 4 - e^{2-6t}$ $y = e^{3t}$
4 3t
$x = 1 - \frac{1}{4}e^{z-6t}$ $y = \frac{1}{3}t^{-1}e^{3t} \rightarrow u = \frac{1}{3}t^{-1}, v = e^{3t}$
$\frac{dx}{dt} = \frac{3}{3}e^{2-6t}$ $\frac{dy}{dt} = \frac{-1}{3}t^{-2}, dy = \frac{1}{3}t^{-2}$
$\frac{dt}{dt} = \frac{e^{3t} - e^{3t}}{3t^2} = \frac{3te^{3t} - e^{3t}}{3t^2}$
$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dt}{dx}$
$= \frac{3t^2}{3t^2} \times \frac{3e^{2-6t}}{3}$
3t² 3e²-6t
$dy = 2(3te^{3t} - e^{3t})$
dx 9t2e2-6t
when $t=\frac{1}{3}$, $dy = 2(3(\frac{1}{3})e^{3(\frac{1}{3})} - e^{3(\frac{1}{3})}$
The 9(2/3)22-6(4/3)
$= 2(2e^{2}-e^{2}) = 1e^{4}$ $4e^{-2}$
46-2

QUESTION PART REFERENCE	Answer space for question 7
6)	x = 4 - e ^{2-6t}
	4
	$4x = 4 - e^{z-6t}$
	e ^{2-6t} = 4 - 4x
	$e^{2} \times e^{-6t} = 4 - 4 \times$
	$e^2 = 4 - 4x$
	e 6+
	$e^{6t} = e^2 \left(\int \right)$
	4 - 4x
	Je6+ = e2
	4-4X
	e 3+ = e = e (as reg)
	5451-x 25(1-x)
	*,
_ ()	$y = e^{3t}$ $e^{3t} = e$ $2\sqrt{(1-x)}$ $3t \ln e = \ln\left(e\right)$ $2\sqrt{(1-x)}$
	3+ = 1/2 - 1/2 \(\int(1-x)\)
-	P
-	$y = \frac{2\sqrt{1-x}}{1-1/2\sqrt{1-x}}$ $\frac{3k-1-1/2\sqrt{1-x}}{1-1/2\sqrt{1-x}}$
	1-1/12 (1-)2)
	= e
	(2×5(1-x) (+-1/25(1-x))
	when (1x) = 25(1-x)
	Turn over ▶

- 8 It is given that $\theta = \tan^{-1}\left(\frac{3x}{2}\right)$.
 - (a) By writing $\theta = \tan^{-1}\left(\frac{3x}{2}\right)$ as $2\tan\theta = 3x$, use implicit differentiation to show that $\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{k}{4+9x^2}$, where k is an integer.

[3 marks]

(b) Hence solve the differential equation

$$9y(4+9x^2)\frac{\mathrm{d}y}{\mathrm{d}x} = \csc 3y$$

given that x=0 when $y=\frac{\pi}{3}$. Give your answer in the form g(y)=h(x).

[7 marks]

QUESTION PART REFERENCE	Answer space for question 8	
8a)	$\theta = \tan^{-1}\left(\frac{3x}{2}\right)$	
		fon 0 = 32
	Itan D = 3x	
	Zsec 20 d0 = 3	1 2 x 4 3x
	dx	(1)
	$\frac{d\theta}{dx} = 3$	2
	dx 2 sec ' B	$\frac{1}{1}$ Sec $\theta = \frac{1}{2} = \frac{1}{2}$
		$Sec \theta = \frac{1}{600} = \frac{1}{2}$ $\sqrt{4+9x^2}$
1-1-1-10 V-1-1-10	d0 = 3	Sei 0 = 54+9x2
	$dx = 2\left(\frac{4+9x^2}{4}\right)$	7
	= 12	Sel 1 0 = 4 + 9x2
	$\frac{12}{2(4+9x^2)}$	4
	d0 = 6	
	$dx = 4 + 9x^2$	
	K=6	

Answer space for question 8
b) $9y(4+9x^2) dy = 6sec 3y$
$\int \frac{9y}{\cos 3y} dy = \int \frac{1}{4+9x^2} dx$
$\int \frac{9ij \sin 3y}{6} dy = 1 \int \frac{6}{4 + 9i^2} dx$
$\int \frac{9y \sin 3y}{6} dy = \frac{1}{6} \tan^{-1}\left(\frac{3x}{2}\right) + C$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$-3y\cos 3y - \left(-3\cos 3y dy = \frac{1}{6}\tan^{-1}\left(3x\right) + c\right)$
- 3y cos 3y + \int 3 cos 3y dry = \frac{1}{6} \tan \cdot \left(\frac{3x}{2} \right) + C
- 3y (0) By + sin 3y = 1/6 tan' (3x) + C
sin 3y - 3y 613y = 1 tan'' (32) +c
$5c=0$, when $y=\pi/3$ $5in(3(\pi/3))-3(\pi/3)\cos(3(\pi/3))=\frac{1}{6}tan^{-1}(0)+C$ $sin \pi - \pi \cos \pi = c$
$0 + \pi = C$ $50, \sin 3y - 3y \cos 3y = \frac{1}{6} \tan^{11} \left(\frac{3x}{2}\right) + \pi$

WWW. TO MARKS COOK COM

QUESTION PART REFERENCE	Answer space for question 8
0.00	
	``

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

